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Velocity fluctuations in dense granular flows
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We use simulations to investigate velocity fluctuations in dry granular flow. Our system is comprised of
mono- and polydisperse sets of spherical grains falling down a vertical chute under the influence of gravity. We
find three different classes of velocity distributions depending on factors such as the local density. The class of
the velocity distribution depends on whether the grains are in a free-fall, fluid, or glassy state. The analytic
form of the distributions match those that have been found by other authors in fairly diverse systems. Here, we
have all three present in a single system in steady state. Power-law tails that match recent experiments are also
found but in a transition area suggesting they may be an artifact of crossover from one class of velocity
distribution to another. We find evidence that the transition from one class to another may correspond to a

second order dynamical phase transition in the limit that the vertical flow speed goes to zero.
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I. INTRODUCTION

Dissipative granular fluids are difficult to characterize be-
cause they are not typically in any sort of equilibrium state.
Unlike a closed system of elastic particles, an initially homo-
geneous steady-state dissipative granular fluid typically de-
velops nonuniform, and even singular, spatial variations in
density, momentum density, and temperature [1,2]. Even
static granular systems are typically the result of such a rapid
quench in temperature that they are in glasslike states and
hence not easily described by equilibrium thermodynamics
[3]. It is, however, possible to produce a fairly homogeneous
steady-state system if there is a steady energy input to com-
pensate for the energy lost in collisions. This can be achieved
by vibrating the system (or a wall), shearing the system,
allowing grains to fall in a chute, or adding stochastic noise
(in a simulation).

Theoretical and computational studies of steady state sug-
gest that these inelastic systems can be subdivided into
phases with different velocity distributions [4-8]. For in-
stance, Esipov and Poschel [4] suggested the existence of a
granular gas, a condensed phase, and a collapsing condensed
phase. They arrived at these phases by studying analytically
the kinetic energy distribution function satisfying the Boltz-
mann equation. They also studied this function numerically
for a system composed of a circular wall maintained at a
constant temperature, enclosing inelastic hard disks with bi-
nary collisions and found that their analytical formulation
suited the simple cases of steady-state flows. Noije and Ernst
[5] solved the nonlinear Enskog-Boltzmann equation for a
freely evolving and a heated system of hard disks or spheres
and found that their freely evolving system coincided with
the result of Esipov and Poschel. Ernst and Brito [6,7] ana-
lyzed the nonlinear Boltzmann equation by adding a stochas-
tic noise or stochastic force to the microscopic equations of
motion. They considered three types of thermostats, namely,
a Gaussian thermostat, a white noise thermostat, and a grav-
ity thermostat and found that the form of the high-energy
tails in the velocity distributions, whether it be Gaussian,
stretched exponential, or power-law depends on the type of
thermostat and on the type of interaction model. Ben-Naim
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and Machta [8] performed theoretical derivations and nu-
merical simulations of inelastic gases to study stationary ve-
locity distributions that obey the Boltzmann equation and
found that their velocity distributions have a high-energy tail
corresponding to a range from high to low velocities, and
that steady states can be realized by injecting energy at high
velocities. They randomly raised particles to high velocities
such that energy was injected only at the tail of the distribu-
tion. This did not change the collision dynamics but rather
set a scale for the most energetic particles. While these stud-
ies have given insight into granular dynamics, experiments
rarely have an analog of stochastic noise or direct injection at
one end of the spectrum or other easily controlled energy
input.

There have been many experiments used to measure ve-
locity distributions. Several experiments have studied granu-
lar flow in a vertical channel [9-11]. Savage [12] used fiber-
optic probes to measure velocity profiles in a vertical channel
at the sidewalls. Natarajan, Hunt, and Taylor [9] found that
their velocity measurements showed that the vertical flows
had a central uniform flow region and a shear flow region
close to the vertical sidewalls. They also found that the mag-
nitude of the fluctuating velocities in the transverse direction
increased from the center towards the sidewalls. Menon and
Durian [13] used diffusing-wave spectroscopy to measure
fluctuation velocities of glass beads in a vertical chute and
found a power-law relationship between mean fluctuation ve-
locities and flow velocity. Losert, Cooper, Delour, Kudrolli,
and Gollub [14] used a vibrated granular experiment in
which they measured velocity statistics for a layer of inelas-
tic colliding beads driven by a vertically oscillating bound-
ary. They found when external excitation was high enough to
generate accelerations 3—8 times that of gravity, the probabil-
ity  distribution of the horizontal velocity P(v)
~exp(=|v/v |'?). For cooler particles in the absence of ex-
citation, they found an exponential velocity distribution.
Rouyer and Menon [15] similarly used vertical vibration of a
vertical plane to measure velocity fluctuations to arrive at
P(v)~ Cexp[-B(v|/0)*] with a=1.55=0.1 at all the fre-
quencies and amplitudes that they used. Recently, Moka and
Nott [16] used video imaging and particle tracking to mea-
sure particle velocity distributions in slowly flowing granular
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material down a vertical channel. They found an abrupt
change in the mean velocity in shear layers near the side-
walls, but that it was constant in the middle region. However,
in contrast to [9,17,18], they found velocity fluctuations to be
larger in the center of the channel than at the sidewalls. They
found the velocity distribution to be non-Gaussian and aniso-
tropic, following a power law at larger velocities and that
this distribution was identical in the outside shear layer and
in the middle core. We will compare our simulation results
with many of these experiments throughout this paper. As we
shall show, the velocity distributions measured in these ex-
periments are very different in different regions and a con-
sistent interpretation of experiment therefore requires know-
ing what phase is being studied. One of the advantages of the
system we are studying is that, as we will demonstrate below,
we can see all of these phases in a steady-state configuration
that can be easily realized experimentally.

In this paper we will look at velocity distributions in the
gravity-driven flow shown in Fig. 1. The simulation is set up
to mimic experiments of chute flow [9,12,13,16]. Spherical
grains are dropped in from the top of a rectangular chute and
fall under the influence of gravity. There are flat walls at the
left and right (x direction) of the chute and periodic boundary
conditions at the front and back (z direction). At the bottom
of the chute (y=0), there is a sieve which controls the flow
rate. When a particle leaves the bottom a new particle is
placed at the top to maintain a constant number of particles
in the system. We studied a similar system in a recent letter
[19] and in two dimensions (2D) in an earlier work [21].
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FIG. 1. (Color online) Section
of a simulation involving 43 200
grains with 15% polydispersity.
The system size is 32aX32a
X 400a. There are reflective walls
at x=0 and x=L,, periodic bound-
ary conditions in the z direction,
and a finite probability of reflec-
tion at the bottom of the chute (at
y=0).
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Based on the distributions of times between collisions, we
found our simulation had three regions or phases, which we
labeled and justified as a glassy region, a fluid region, and a
free-fall region. We found there was a different collision time
distribution for each of these three distinct phases [19]. Now,
in our present study we also find these three phases can be
characterized by the form of their respective velocity distri-
butions.

In the first section we describe the simulations and the
steady-state configuration of the mean velocity and velocity
fluctuations. We then examine the distribution of velocity
fluctuations in detail. Different velocity distributions are
found depending on whether the system displays character-
istics of a fluid or a glass. The apparently conflicting results
seen in experiments [9,16] are found to be related to different
phases in our simulations. We then examine the relation of
the velocity fluctuations to the distribution of times between
collisions. We find evidence that the transition from one class
to another may correspond to a second-order dynamical
phase transition in the limit that the vertical flow speed goes
to zero.

II. MODEL

A typical snapshot from one of our simulations is shown
in Fig. 1. As indicated in Fig. 1, there are three regions,
which we label as a glassy region, a fluid region, and a free-
fall region. These labels will be referenced throughout this
paper and were justified in our previous study [19]. Spherical
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grains are dropped in from the top of a rectangular chute in
the free-fall region and the grains accelerate at 1 g where g is
the acceleration due to gravity (units are given in footnote
[20]). There are flat walls at the left and right (x direction) of
the chute and periodic boundary conditions at the front and
back (z direction). This geometry is similar to that studied
experimentally in [16] where similarly rough sidewalls were
used. Periodic boundary conditions in z reduce wall effects
and allow us a translationally invariant direction to average
data over. In experiments a similar situation is obtained by
having a system much longer in z than x. At the bottom of
the chute (y=0), grains are reflected with a probability p
(typically p=90%) which models a sieve at the bottom of the
chute. This has the same effect as a mesh that was used in the
chute experiment described by Menon and Durian [13]. By
using a sieve to restrict our flow of particles, we are able to
also model other experiments that use a restricting outlet as
in the experiment by Moka and Nott [16]. As detailed later,
we were able to reproduce the results of both of these ex-
periments. We maintain a constant number of particles in our
simulation by having new particles placed at the top of the
chute when an old particle leaves the bottom. We ran simu-
lations with different initial conditions for grains at the top of
the chute, for instance, we started particles at rest at the top
of the chute and let them fall under the influence of gravity,
gave them random velocities equal to the grains leaving the
system at the bottom, and found no change in our results that
are reported in this paper or in our previous paper [19].

The velocities of two grains after collision ¥| and I} in
terms of the velocities before collision, r; and r,, are

Iy I (I+p) [(-my my \[F;-q
L=l ) . q. (1)
ry £,/ (mp+my)\ my  —m/\i,-q
where q=(r,-r;)/|r,—r|, and u is the coefficient of resti-
tution. Such collision models of granular flow have a long

history [22,23]. u is a velocity-dependent restitution coeffi-
cient described by the phenomenological relation [24-26],

1- (1 - IU“O)(vn/UO)Oja
mv,) = _
,lLo, U,l = Uo.

(2)

Here v, is the component of relative velocity along the line
joining the grain centers, ,,Lio_is the asymptotic coefficient at
large velocities, and vy=v2ga [27]. Equation (2) effectively
makes the ball collisions become more elastic as the colli-
sions become weaker as seen in experiments [24-26].
Experiments clearly show that the weight of a dense col-
umn of grains is supported by the walls [28,29]. This is also
desirable in a simulation as it will lead to a pressure inde-
pendent of height in the dense glassy region. Specular reflec-
tion will not accomplish this. In experiments, spin and tan-
gential friction would result in a loss of vertical momentum
at rough-surfaced walls. While we do not have spin and fric-
tion in our simulation, we need a vertical loss to model the
experiment. We achieved this by modeling the left and right
walls as rough walls by having particles reflect off the left
and right walls of the chute with a partial loss, typically 10%
in their vertical (y) velocity. The precise value of the partial
loss made little qualitative difference. Rough walls enabled
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our flowing grains to see a wall support and a shearing re-
gime similar to that found in experiments [9,16].

A parameter that turns out to be surprisingly important is
the polydispersity of the grain sizes. Here, we use a Gaussian
distribution of grain radii and a polydispersity of 15% means
that the standard deviation of the particle radii is 0.15 if the
mean radius is 1. Typically even experiments that use
“monodisperse” grains have some small polydispersity on an
order of a few percent. We have performed simulations at a
range of polydispersity from 0 to 15% and find even a few
percent can give significantly different results from pure
monodisperse systems. This is because the geometry in the
packing of particles of different sizes dictates whether par-
ticles crystallize (in the monodisperse case) or go into a
glassy state (in the polydisperse case). This has a significant
impact on collision time power laws [19].

II1. STEADY-STATE CONFIGURATION

We started a configuration with particles racked in a three-
dimensional (3D) rectangular array with a Gaussian distribu-
tion of randomized initial velocities with standard deviation
0.8. From this initial configuration, we ran our simulation
and we plotted the number of collisions over time. When the
total number of collisions per unit time remained level over
time, our simulation had reached a steady state. For our 3D
system, steady state was achieved after about 100 time units,
enough time for all grains to move through the system once.

The number of grains was chosen so that there would be a
large free-fall region at the top (so the results would not
depend on specifics of the injection at the top) but enough so
that there would also be a large glassy region (50%—65% of
the system). Flow velocity is controlled by the reflection
probability p at the sieve. However, the qualitative behavior
and division into three phases is not that dependent on the
flow velocity until the sieve restriction is nearly removed
(near p=<0.10).

Typical steady-state configurations of the local density,
measured as volume fraction, and vertical (y) velocity down
the center of the chute are shown in Fig. 2 as a function of y
(height). A clear difference in the density profile of a nearly
monodisperse (1%) [dashed line in Fig. 2(a)] and the system
with 15% polydispersity (solid line) is clearly visible. In the
more polydisperse system the density in the region we have
labeled as fluid steadily increases until it hits 0.60 volume
fraction and is then constant in the main bulk of the column.
However, the nearly monodisperse system shows a steady,
nearly linear, increase in density from a volume fraction of
0.64 to nearly 0.70 near the bottom of the channel. This
indicates that the nearly monodisperse system continues to
order (i.e., crystallize) as it travels down the channel, even in
the very dense region.

As previously indicated there are three regions, which we
label as a glassy region, a fluid region, and a free-fall region.
These labels were justified in our previous work [19]. In the
free-fall region the grains accelerate at 1 g and collisions are
rare enough that the acceleration is unimpeded as shown in
Fig. 2(c). In the liquid region the density is sufficiently high
that collisions mix the grains, but the distribution of collision
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FIG. 2. (Color online) Average (a) density (volume fraction) for
1% (dashed line) and 15% polydispersity (solid line) along the
height of a 3D chute. For 15% polydispersity, (b) the y velocity and
(c) the average acceleration as measured by the material derivative.
The inset in (c) shows the same data on a logarithmic scale, clearly
indicating the acceleration of 1 g down in the free-fall region. This
justifies the “free-fall” label. Note that this plot takes an absolute
value so the acceleration is actually —1 g and changes sign at a
height of 300. This is for a 3D 32a X 32a X 400a 15% polydisperse
simulation with an asymptotic coefficient of restitution uy=0.9.

times (the time between collisions for a given grain) is ex-
ponential, meaning that collisions are largely independent. In
the glass region, the collision time distribution is a power
law and thus there are collisions at a wide range of time
scales [19]. We should emphasize, as shown in [19], that
monodisperse systems continue to crystallize so they are not
truly a glass.

The velocity profile in a cross section of the flow is also
very different in the fluid and glass regions. As can be seen
in Figs. 3(a) and 3(b), in the fluid region the fluid velocity
fits a parabolic flow as expected for a fluid with a constant
viscosity in a pressure gradient (Poiseuille flow) [30]. In the
glassy region, jamming or plasticity occurs giving way to a
plug type profile in the 15% polydisperse case. More pro-
nounced kinks occur in the 1% polydisperse (essentially
monodisperse) case as shown by the x’s in Fig. 3(a). These
kinks are associated with fracture along crystal domain
walls. Similar profiles are seen in two-dimensional flow
where it is easy to see the crystallization and domain walls
(see Fig. 4). This crystallization is not seen initially in the
monodisperse systems, but once it develops it persists for as
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FIG. 3. Vertical velocity profiles along a width of 3D chute in 32
by 32 systems at different heights. (a) is for 1% polydisperse sys-
tems with 4 in the fluid phase at y=250 (averaged over 500 time
units), M in the disordered solid phase at y=200, and * in the
crystallized phase at y=150 (averaged over five time units). (b) is
for a 15% polydisperse system at different heights with the A in the
transition region of the free-fall to fluid phase at y=310 (this plug
profile was similar in the transition region of the free-fall to fluid
phase for the 1% polydisperse system), 4 in the fluid phase at y
=290, and the others in the glassy phase. The lines in the fluid phase
are fits to a parabola. The discontinuities in (a) indicate fracture and
while these discontinuities move around somewhat over time, the
average profile does not become smooth.

long as our longest simulations. This suggests that once a
seed crystal forms, it acts as a template for the material com-
ing out of the liquid phase. This, and our previous work that
showed different exponents for poly- and monodisperse sys-

(b)

FIG. 4. Visualization of 2D sphere simulation showing (a) ran-
dom packing in monodisperse spherical grains at the early stages of
the simulation (at a time of 200 in simulation units), and (b) crys-
tallization in monodisperse spherical grains at the later stages of the
simulation (at a time of 3200).
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FIG. 5. (Color online) Plot of (vi) versus the width x in the (a)
fluid, (b) glass-fluid transition, and (c) glassy regions for 15% poly-
disperse 3D simulation. The curves represent data with an
asymptotic coefficient of restitution of u of 0.97. Data is averaged
over 10 ball diameters in height.

tems for the power-law distribution of collision times [19],
suggests that the dynamics of the very dense monodisperse
and polydisperse systems are significantly different. The dy-
namics of the dense polydisperse systems are more akin to
regular structural glasses, whereas the dense monodisperse
systems are more similar to fracture dynamics in crystalline
systems.

The flow profile in the free-fall region depends somewhat
on the profile that the grains start with at the top. If the grains
start with a uniform distribution of velocities at the top, in-
dependent of their x position, then the profile will start out
flat. As the grains fall down the channel they are slowed at
the wall and the fluidlike phase gradually grows in from the
walls. This gives what looks like a pluglike profile as the
fluid phase is approached. However, the plug profile here is
due to very different reasons than those causing the plug
profile in the glassy region. In the glassy region the central
portion of the flow is jammed into a true plug, whereas in the
free-fall region the plug flow is from the retention of the
input profile at the top of the column as shown by the top
profile (A’s) in Fig. 3(b).

The characteristics of the velocity fluctuations (dv?
=((v,~(v,))?) are also different in the different regions.
Figure 5 shows the profile of the velocity fluctuations in the
different regions. In the fluid region (and the free-fall region
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FIG. 6. (Color online) Plot of (a) 51))2; (solid line), 5v§ (dashed
line), and the square of the mean relative velocity in normal direc-
tion during a collision vi (dotted line) versus the height for 15%
polydisperse 3D simulation with an asymptotic coefficient of resti-
tution ©y=0.9 and (b) the velocity-dependent coefficient of restitu-
tion u(v,). Note that plot (a) is a semilogarithmic plot.

which is similar) the grains gain enough kinetic energy be-
tween collisions (from acceleration due to gravity) to more
than compensate for the loss in kinetic energy in collisions.
As a result, the system is hotter (6v? is bigger) in the middle
and heat flows out from the center towards the walls (we
define  the granular temperature  as T= [(vf)
+<(vy—<vy))2+<vz)]/2 and heat flow is proportional to V7).
In the glass phase, the system is colder (6v? is smaller) in the
middle and heat flows in from the shear zones near the walls.
Figure 6 shows that 6,7>0 in the liquid and free-fall re-
gions, so we expect heat should flow down the channel there,
but that there should be no vertical heat flow in the glass (as
d,T=0 in the glass). As Fig. 6(a) shows, the square of the
typical normal velocity vﬁ encountered in a collision essen-
tially tracks the velocity fluctuations. In the fluid and free-
fall regions the typical v, is sufficiently high that (u) is close
to its asymptotic value u,. In the glassy region v, is typically
much smaller and {u(v,)) is closer to 1.

Elastic hard spheres undergo a fluid-solid phase transition
[31]. Inelastic granular systems have a similar transition
[32-35]. Theory suggests that in inelastic systems these
phases can be further subdivided into dynamical phases with
different characteristic velocity distributions [4—8]. The dif-
ferent phases we see in our simulations are closely aligned
with the phases suggested by Esipov and Poschel [4], as we
shall show in more detail below. Experiments, however, of-
ten have not clearly identified which phase is being ob-
served. This has led to what at first appears to be potentially
conflicting results. Moka and Nott [16] observe a phase that
exhibits pluglike flow and is hotter in the interior of the
system. This corresponds to the free-fall to fluid transition
region in our system. As in the experiment, our velocity in
this transition region (A’s) of Fig. 3(b), also shows a plug
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in (d) free-fall, (e) fluid, and (f)
glassy region for a 15% polydis-
perse simulation. Note that (v,)
=0, so we plotted the x-velocity
distribution as  |v,|=|v,—(vy)
whereas (v,)#0, so we plotted
the y-velocity distribution as |v,
—(v,)|. These velocity distribu-
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tions were taken at heights in the
chute at #=300 in the free-fall re-

P(vy)

gion, h=270 in the fluid region,
and £=190 in the glassy region.
Fits are shown with the solid line
(,LLO=097)

-1.0

profile. This is because the particles at the top of the chute
are given random velocities, and thus have, on average, a flat
velocity profile at the top. As the particles travel down to the
free-fall to fluid transition region this develops into a plug
profile as the fluid region grows in at the walls. The corre-
sponding plot of granular temperature shown in Fig. 5(a) is
hotter in the middle as collisions with the walls are slowing
the grains in this region more than in the interior where there
are few collisions. More typically, experiments [9,17,18] see
the interior being colder corresponding to our glassy phase.
Clearly, the system supports a finite shear stress in the central
glassy region with continuous, plastic deformation along the
boundary. This is shown in the plug flow profile in the glassy
region of our simulation, (x’s) of Fig. 3(b), and in the corre-
sponding plot of granular temperature in Fig. 5(c), which
shows the temperature to be colder in the middle. As we
shall show below, the velocity distributions are very different
in these three different regions and a consistent interpretation
of experiment therefore requires knowing what phase is be-
ing studied. Few experiments tend to pin this down and the
implicit assumption appears to be that the entire system is in
one phase, something that is clearly not the case. We hope
that future experiments will pay more attention to measuring
properties such as density and flow rate as a function of
height to clearly identify the phases present. One of the ad-
vantages of the system we are studying is that we can see all
of these phases in a steady-state configuration that can be
easily realized and thus studied experimentally.

-05 00 05 1.0

Vy— <vy>

IV. VELOCITY DISTRIBUTIONS

A normal fluid in local equilibrium in the canonical en-
semble has velocity fluctuations év distributed about the lo-
cal mean velocity v in a Gaussian,

2
P(6v) ~ exp(— i) (3)

kgT

Numerous experiments and simulations [5,8,14-16,36] have
shown that velocity fluctuations in granular materials do not
generally follow such a distribution. This is not that surpris-
ing as energy is constantly being lost (due to the inelastic
collisions) and the assumption of local equilibrium is dubi-
ous in most of the system. However, there is also conversion
of potential energy to kinetic energy due to the grains falling
so the possibility of kinetic energy loss from collisions bal-
ancing kinetic energy gain can occur, at least in some re-
gions. In fact we find two regions in the system where the
distribution of v, is Gaussian.

The first location is in the free-fall region. Grains are
placed at the top of the chute at a random x and z position
and with a small random velocity ((vi) similar to at the
bottom of the chute but from a uniform distribution). Even
though the starting velocity distribution is not Gaussian, the
velocity distribution at the top becomes Gaussian within 5
ball radii of the top (we measured the distribution every 5a
from top to bottom). This is not surprising if one recalls the
central limit theorem (particles start at top with velocities
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FIG. 8. (Color online) Aaz(évi— 5v§)/ 5v§, the anisotropy in the
velocity fluctuations relative to the x direction. A, (dashed line) and
A, (solid line) are shown for the 3D (a) 15% polydisperse system
and (b) 1% polydisperse (essentially monodisperse) system with an
asymptotic coefficient of restitution uy=0.9. The vertical dashed
lines indicate the fluid transition region.

independent of nearby particles). The v, distribution remains
Gaussian in the free-fall region [see Fig. 7(a)], but narrows
as the grains fall (i.e., the standard deviation (vi)” 2 becomes
smaller as shown in Fig. 6). The distribution narrows as a
result of collisions dissipating kinetic energy. This energy
could, in principle, be recouped from gains from the conver-
sion of potential energy to kinetic energy, and as we will see
below this does affect the v, distribution. However, the v,
fluctuations are largely decoupled from the v, fluctuations in
the free-fall region. This can be seen in the anisotropy of the
velocity fluctuations shown in Fig. 8 for uy=0.9. There is a
significant difference in the anisotropy in the polydisperse
versus monodisperse (1% polydisperse) cases when we com-
pare Fig. 8(a) versus Fig. 8(b). The reason we find this dif-
ference in anisotropy in the glassy phase is that in the mono-
disperse case, the particles become more ordered and tend to
crystallize causing forces to translate along straight line
chains of particles. Thus the monodisperse particles become
more correlated. In the polydisperse case the particles are
more disordered and thus less correlated. We reported this
finding in our previous paper [19]. In the remainder of the
paper we will focus on the 15% polydisperse systems. Also,
in the free-fall region, 5vi and 5vf differ significantly from
505. In the transition from free fall to fluid, this anisotropy
abruptly changes sign and then drops close to zero in the
liquid phase. We will discuss this transition region more be-
low after we have discussed the distributions in the main
phases.

In the fluid phase, the v, distribution fits a Gaussian at
low v, but has stretched exponential tails as shown in Fig.
7(b). These tails gradually fill in the whole distribution to the
point where the entire distribution can be well fit to a func-
tion A exp(—(|v,/vo|%) , with @=3/2, as shown in Fig. 7(b).
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FIG. 9. (Color online) (a) Log-log plots of x-velocity distribu-
tions in a transition region between free fall and fluid. The line is a
power-law fit P~ 1/v? with 8=3.8. (b) y-velocity distributions in a
transition region between free fall and fluid. The line is a power-law
fit P~ 1/v# with 8=7.3 on the left and 8=2.4 on the right.

Similar velocity distributions (with the same a=3/2) have
been measured in experiments of driven granular systems
[14,15]. Such a distribution has also been shown to be a
solution to the Boltzmann equation for a system of heated
(i.e., with stochastic noise) granular fluid by Noije and Ernst
[5] and as a special case of more general multiplicative driv-
ing [37]. In our case, the driving is not stochastic (the grains
are converting gravitational potential energy into kinetic en-
ergy deterministically). However, in the fluid phase the dy-
namics are apparently sufficiently chaotic to mimic the sto-
chastic noise used in [5,37]. In the free-fall region the
direction of particles is predominantly downward with grav-
ity whereas in the fluid region there are more sideways par-
ticle collisions which couple the velocity fluctuations in all
directions (the anisotropy seen in Fig. 6 disappears). Thus
the net result (i.e., the form of the distribution) has the same
velocity distribution (with the same @=3/2) in the fluid re-
gion as is seen in simulations with stochastic noise. It would
appear that the stochastic nature is actually essential as the
velocity distributions do not have this shape in the free-fall

041304-7



JOHN J. DROZD AND COLIN DENNISTON

050

0.20

0.10

C(x)

0.05

0.02

0.01

[X=Xol/Lx

C(x)

[X=Xol

FIG. 10. (Color online) Correlation function C(x) for the x com-
ponent of the velocity measured from xg=L,/2 (center of the
chute). The sizes of all the systems are L, X 32a X 400a, where L, is
the width of the system in the x direction (L,=20a for the boxes,
28a for the triangles, 36a for the circles, and 44a for the diamonds).
(a) Semilogarithmic plot of C(x) for the x component of velocity in
the glassy region as a function of the scaled variable (x—xg)/L,.
Data shown in plot (a) is averaged in height in the uniform glassy
region at y,=90a £20a. The gray line has a slope of —8, which
translates to a length scale §&=0.125L, in the relation
exp{—(x—x¢)/ €. (b) C(x) in the fluid region as a function of |x
—xo|. The data shown in plot (b) is at a height in the fluid region of
the three systems all at the same granular temperature.

regions, where the grain trajectories are too independent to
induce chaos, or the glassy region, where the motion of the
grains is too coherent.

In the glassy phase, the v, distribution again fits a Gauss-
ian at low v, but has exponential tails. In this case, the tails,
that are best fit by a function A exp(—|v,/v,|), are closest to
filling the distribution near the top of the glassy region and
then settle to a fixed fraction of the distribution in bulk of the
glassy region. Such distributions have also been seen in ex-
periments of vibrated monolayers of spheres [38,39]. Expo-
nential tails have also been seen in several simulations of
dense clusters in two dimensions [37,40]. Such exponential
tails have also been derived in the context of driven inelastic
Maxwell models with diffusion [4,6,7,41].

We found that our v,—(v,) distributions in the free-fall
and glassy regions showed similar behavior to the v, distri-
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FIG. 11. (Color online) Relationship between fluctuating and
flow velocity in the glassy region. Data was averaged in directions
normal to g for the 32X32 [x, 5v=(5v§+5v§+5v§)”2] and 16
X 16 (A, dv=dv,) 15% polydisperse systems. The fitted lines have
a slope of 2/3, in agreement with the experiments of [13]. The
points arcing across the line are nonaveraged values of velocities
and velocity fluctuations at specific local points in the system.

butions described above and as shown in Figs. 7(a) and 7(c).
In the fluid region, however, the Uy distribution was dramati-
cally asymmetric about the mean. This distribution can be fit
separately on the left and on the right of its peak to functions
A exp(=([v,/vo|®) , with a=3/2, as shown in Fig. 7(b). In-
terestingly, this asymmetry in the v, distribution has also
been found in vibratory experiments [15]. A possible origin
of this anisotropy may be that particles going faster than the
average downward velocity are more likely to collide than
particles going slower than the average.

Clearly, the velocity distribution for each state has very
distinct characteristics. As a result, there are transition areas
where the velocity distribution changes from one type to
another. These crossover areas can give the impression of
there being power-law tails in the velocity distributions.
Such distributions have also been suggested theoretically as
“borderline” cases [6,7]. As an example we examine the tran-
sition area between the free-fall and the fluid regions. The
velocity distribution for the fluid is wider than that in the
free-fall region (cf. Fig. 6) and grows into the free-fall dis-
tribution from the tails. The v, velocity distribution and v,
velocity distribution at roughly halfway through this transi-
tion area are shown for one case in Figs. 9(a) and 9(b), re-
spectively. As can be seen, the tails of these distributions can
be fit to P~ 1/vP with 8=3.8 for both tails of the v, distri-
bution and with 8=7.3 and S=2.4 for the left and right tails
of the v, distribution rather convincingly. Theory [6-8] sug-
gests considerably higher exponents for the power laws. In-
terestingly, our exponents are very close to the experimen-
tally determined power-law exponents of 8=3.6 for the tails
of the v, distribution and B=7.4 and $=2.9 for the tails of
the v, distribution found recently in an experiment by Moka
and Nott [16]. Their experiment configuration is very similar
to our simulation and the characteristics of the average ve-
locity profile and the profile of velocity fluctuations are con-
sistent with what we find in the free-fall to fluid transition
area (compare Fig. 1 of [16] with the appropriate profiles in
our Figs. 3 and 5). It is not clear that this is a true power law
as it corresponds to a crossover area and while we have just
over three decades in height, we do not have a full decade in
width. However, it is possible that the equivalent area in the
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experiment is wider than we see in our simulations due to
some aspect that we are not including (such as particle spin).
It would be interesting to see the experiment results at a

range of heights along the column as we have done here in
the simulations.

V. VELOCITY CORRELATIONS

As the particles undergo collisions traveling down the
chute, they lose some of their relative velocity v, and hence
become more correlated. In order to compare how the par-
ticles become correlated within the chute, we measured their
v, velocity-velocity correlation function every 5a from the
top to bottom of the chute. In particular, we compared the
velocity correlations of the particles in the glassy and fluid
regions and found a noticeable difference in the way the
velocity correlations scale.

We ran simulations with different sized system widths L,
in the x direction, while keeping the dimensions in the y
direction and z direction the same. Note that as the walls are
at x=0 and x=L,, (v,)=0. Based on our data for system

widths of 20a, 28a, 36a, and 44a, the (v,(xy)v,(x)) velocity
correlations,

C(x) — <12)x(x)l;x(x0)>]/2 i
[(vi(X)v5(xo))]
for various system sizes are shown in Fig. 10. The form of

the tails of the velocity correlations in the glassy region fol-
low an exponential decay, exp{—(x—x,)/&}. This is demon-

(4)

T

strated by the straight portions of the curves in the semiloga-
rithmic plot shown in Fig. 10(a). Remarkably & scales only
with system size, £€=0.125L,. [The lines in Fig. 10(a) are
parallel and the x axis is already scaled by L,.] The slope of
the gray line in Fig. 10(a) corresponds to £€=0.125L,.

We also tried looking at 2D correlation functions
(v, (yo)v(¥)). The correlation length was similar in the y di-
rection, although the data for the 2D correlation function was
much noisier [as it was measured relative to a single point
(x0,¥0,20) and so could not benefit by the averaging over
different y, that was done for the 1D correlation functions].
As the weight of the glassy column is supported by the walls,
essentially through what is expected to be an arching effect
[28], the similarity of correlation lengths in the x and y di-
rections is expected.

Interestingly, in the fluid region, the (v, (xy)v,(x)) velocity
correlations drop to zero at a length of around 3—-5a, where
a is the mean particle radius. This is shown in Fig. 10(b),
which plots the velocity correlations in the fluid region for
three different sized systems, but at the same granular tem-
perature. Thus we can clearly see that how the correlations
scale also distinguishes between a glassy and fluid phase in
granular matter. It would be interesting if experiments could
measure velocity correlations in different phases of granular
matter to compare with our findings.

VI. PROPERTIES RELATED TO VELOCITY
FLUCTUATIONS

Previous work has suggested a possible relationship be-
tween the velocity fluctuations, dv=|6v?|"?, and the flow
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FIG. 13. (Color online) Mapping of points A, B, C, D, E, and F
between (a) v, velocity profile along chute height y and (b) log-log
plot of velocity fluctuations as measured by the granular tempera-
ture 7, versus mean collision time 7. in a 15% 3D 32X 32 X250
simulation with p=0.01. The free-fall region runs between points A
and B. The free-fall to fluid transition region runs between points B
and C. The fluid region runs between points C and D. The glassy
region runs between points D and E. Between points £ and F the
material becomes fluid again near the bottom sieve. Here, p is the
probability of reflection at the bottom of the chute and the
asymptotic coefficient of restitution py=0.9.

velocity v. In [19] we used our simulations to confirm Me-
non and Durian’s diffusing wave spectroscopy experiment
[13] that showed the fluctuating velocity is power-law related
to the flow speed v, of particles falling under the influence of
gravity in a vertical chute, v <v?? (Fig. 11). An important
detail is that we arrived at this 2/3 power law only after we
had averaged our data across the x direction of the chute (in
the glassy region). This is similar to the experiment, where
diffusing wave spectroscopy was used. Such an experiment
involves looking at the correlation of laser speckle patterns
after the laser beam has traversed the width of the chute.
Note, however, from Fig. 5(c) that the velocity fluctuations
are not constant across the channel. Plotting dv locally (i.e.,
the profile across the chute rather than the average), we get
the curved branches in Fig. 11. Note that the actual profiles
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cross the average perpendicular to our 2/3 power-law line.
Thus this power law is a nonlocal, averaged effect.

In our previous paper [19] we studied collision time dis-
tributions in the glassy and fluid regions. Here we will ex-
amine how the collision time distribution changes from one
region to the other and how the collision times are related to
the velocity fluctuations. The average collision time (the time
between successive collisions for a particle) is

beN(T)dT
= (=", (5)
f N(ndr

s

where N(7) is the histogram of collision times observed in
one of our simulations, and ¢, and 7, are upper and lower
cutoffs. Figure 12 shows the collision distributions for dif-
ferent regions of our simulations. For the analytic form of the
collision time distributions that we will compare our simula-
tion data to,

t, for N(7)~ ¢ ™m

2t, for N(7) ~ 772,

tb*}w,

(n)= (6)

E’b for N(7) ~ 72, t,—0.

Thus, the mean collision time tends to zero, or the lower
cutoff, for the 773 case whereas it tends to the upper cutoff
for the 77!/2 case.

As can be seen from Fig. 12, in the fluid region we have
an exponential distribution of collision times and therefore a
well-defined mean collision time (7), t,, from Eq. (6). As
shown in Fig. 12(a), in the glass, N(7)~ 73 as reported in
our recent paper [19]. This is shown in Fig. 12(c) for one of
the faster systems. In the glass, (7) is essentially equal to the
lower cutoff of the power law [see Eq. (6)]. In the fluid-glass
transition region N(7)~ 72 as shown in Fig. 12(b). In this
case (7) is at the upper cutoff, Eq. (6), corresponding to the
crossover to the exponential tail. The 772 power law exists
only over a narrow band of heights and disappears by the
exponential tail continuously turning into the 77 glass dis-
tribution. The crossover between the resulting two power
laws (¢, for 7-'/2 and ¢, for 773) moves lower as one goes into
the glass. The existence of the 7!/> power law is somewhat
curious as it does not correspond to either the fluid or glassy
states. However, the way it disappears as we go into the glass
provides a clue. If one associates the glass with a “collapsing
condensate” [1,2,4], the fluid to glass transition should in-
volve “droplets” of collapsing condensate coming out of the
fluid. In each droplet, the collision times should be distrib-
uted as in the glass, but the cutoff 7, will depend on how
close the droplet is to the close-packed glass density. Drop-
lets of different sizes are then likely to have different cutoffs.
A wide distribution of droplet sizes will then result in a wide
distribution of cutoffs for the N(7) ~ 773 power law, perhaps
generating the 772 low end tail seen in the transition regime.

We now examine the relationship between the velocity
fluctuations, as measured by the granular temperature T
=((v§)+<vy—(vy>2)+(v§>)/2 and the collision times. Figure
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FIG. 14. (Color online) Log-log plot of velocity fluctuations as measured by the granular temperature 7, versus mean collision time 7,
in (a) free-fall region, (b) free-fall to fluid transition, (c) fluid region and (d) glassy region in a 15% 3D 32X 32X 250 simulation with (O
with p=0.01), (O with p=0.1), (& with p=0.25), (A with p=0.5), (V with p=0.75), and (@ with p=0.9). Here, p is the probability of
reflection at the bottom of the chute and the asymptotic coefficient of restitution y=0.9.

13(a) shows the velocity profile for a very fast flowing sys-
tem (with probability of reflection at the bottom of the chute
of p=0.01). The transitions between different phases are
marked by capital letters. We can map these labeled points
that mark the boundaries between the different regions onto a
plot of T vs 7. shown in Fig. 13(b). The different regions
show very different relationships between T and 7. To see if
these relationships are general, or system specific we look at
several systems with different probabilities of reflection at
the bottom of the chute, and hence very different flow rates.
By plotting the different systems on the same log-log plot, as
shown in Fig. 14, we can observe whether there is a power-
law relationship between T and 7. in each of the different
regions. As can be seen from the figure there exists a power-
law relationship 7=7 in the free-fall or fluid transition with

v around —1.1 (the lines are all parallel and have slope —1.1)
and in the fluid region with y around 1.4, but there is no
obvious relationship in the free-fall and glassy regions.

In Fig. 15 we examine the fluid and glass regions corre-
sponding to different values for the probability of reflection
at the bottom of the chute, p [42]. As shown in Fig. 15, the
faster systems with lower reflection probabilities of p such as
10% tend to turn around at the fluid to glass transition and
reach a limiting line. The slower systems with higher reflec-
tion probabilities such as 75% both fall on the same limiting
line. This behavior can be explained as follows. The simula-
tion with p=10% is a much faster flow so its y velocity,
density, and velocity fluctuations are not a constant value in
the “glass.” For example, the density at the top of the glassy
region for the fast flows is slightly lower and gradually in-
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FIG. 15. (Color online) (a) Granular temperature 7 versus mean collision time 7., and (b) temperature versus mean collision time scaled
by the glass transition temperature, T, and the corresponding collision time 7, in a 15% 3D 32X 32X 250 simulation with (O with p
=0.01), (O with p=0.1), (¢ with p=0.25), (A with p=0.5), (V with p=0.75), and (® with p=0.9). Here, p is the probability of reflection
at the bottom of the chute and the asymptotic coefficient of restitution py=0.9.

creases as one goes further into the glass. Thus the system is
unable to reach a stationary, or in other words translationally
invariant, steady state.

It is also worthwhile to consider the fluid to glass transi-
tion regions in terms of the jamming phase diagram proposed
by [43]. They propose a “jammed” phase diagram as a func-
tion of temperature, density, and shear stress where the re-
gion in the vicinity of the origin is jammed and the region far
from the origin is not jammed. Their jamming transition is
expected to be first order except for the J point, a transition
at close packing density and at 7=0 and where the shear
stress is zero. The transitions for the different systems seen in
Fig. 15 occur at different temperatures and different shear
stresses (related to the flow speed controlled by the probabil-
ity of reflection p). As we lower the flow speed, and the
temperature at which the transition occurs decreases, our sys-
tem should be approaching the J point, and the transition
should become more continuous and the “glass” state should
approach a more well-defined translationally invariant, disor-
dered limit. This is consistent with what we observe in Fig.
15. If we attempt to scale Fig. 15(a) by the difference in
temperature from the observed transition for each system, we
arrive at Fig. 15(b). We find that the slower systems start to
approach a single universal line but the faster systems devi-
ate. While a full investigation of the transition is beyond the
scope of the current paper, we plan to investigate this more
in the future.

VII. CONCLUSIONS

In this paper we have examined velocity fluctuations in
computer simulations of a granular system. The gravity-

driven granular chute flow system we study has been realized
in numerous experiments. Our observations are consistent
with the fluctuations observed in the experiments most
closely matching our simulations [13,16].

We find three main classes of velocity distributions corre-
sponding to the free-fall, fluid, and glassy regions. In the
free-fall region we see a Gaussian distribution of velocities,
but the velocity fluctuations in the vertical and horizontal
direction evolve separately. In the fluid region the velocity
distribution has a stretched exponential tail of exp(-v*/?), but
the vertical velocity fluctuations become very asymmetric
and require separate fits for velocities above and below the
mean. In the glassy state the velocity distribution has expo-
nential tails. Velocity fluctuations are correlated on the scale
of the system size in the glassy region and have a finite
correlation length independent of system size in the fluid
region.

We then related the velocity fluctuations to the collision
time, the time between collisions. The distribution of colli-
sion times in the glass is power-law distributed and in the
fluid it is exponential, as we observed in previous work [19].
We also find evidence that the transition from fluid to glass
becomes more continuous for slower-moving, lower tem-
perature flows. The slower flows also reach a more transla-
tionally invariant disordered glassy state. These observations
are consistent with the approach to the J point defined by
O’Hern and collaborators [43].
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